A JOINT PROJECT BETWEEN
USDA APHIS WILDLIFE SERVICES
AND
INDIANA DNR DIVISION OF FISH AND WILDLIFE

Indiana Wildlife Disease News

Volume 6, Issue 2 Spring 2011

Disease in Focus

Deer fibroma

Description

Wart-like growths found on the skin of white-tailed deer and other members of the deer family are fibromas. They are popularly referred to as skin tumors, or simply warts. Histopathologists identify skin tumors from deer as papillomas, fibromas, or papillofibromas depending upon the predominant type of tissue making up the tumor. Since there is evidence that skin tumors common to deer are caused by one kind of virus, and the differences that have been described for them is due to their age, all will be treated as one, the fibroma, in this discussion.

An infection with fibromas is called fibromatosis.

Fibromas are conspicuous as firm, nodular masses fastened only to the skin and varying in diameter from 10 to more than 100mm. All are fleshy. Some are covered with gray or dark skin which often is scratched and bleeding. Others have a black, dry, hard surface that may be fissured much like the head of a cauliflower. The larger ones tend to be pendulous because of their weight and stem-like attachment to the skin.

Fibromas are randomly distributed on deer but occur most frequently about the eyes, neck, face, and forelegs. They may be

Continued on pg. 2

Disease Investigation Update

Oral squamous papillomas in an Indiana Coyote

In January 2011, USDA-APHIS-Wildlife Services Wildlife Disease Biologist J. N. Caudell was referred to a landowner in northeast Indiana who had shot a coyote with obvious signs of disease around the muzzle. Caudell picked up the animal and prepared it for submission to the diagnostic lab at the National Wildlife Health Center (NWHC). The coyote was shipped to the NWHC in March 2011. The coyote was negative for heartworm, distemper, parvovirus, and was generally in good condition. The coyote was diagnosed with multiple squamous papillomas of the mouth of an unknown origin. While this is not common in coyotes, it has been reported several times in the literature (Trainer et al. 1968, Samuel et al. 1978).

In January 2011, USDA-APHIS-Wildlife Services Wildlife Disease Biologist Caudell was referred to a landowner in northeast Indiana who had shot a coyote with obvious signs of disease around the muzzle. Caudell picked up the animal and prepared it for submission to the diagnostic lab at the National Wildlife Health Center (NWHC). The coyote was shipped to the NWHC in March 2011. The coyote was negative for heartworm, distemper, parvovirus, and was generally in good condition. The coyote was diagnosed with multiple squamous papillomas of the mouth of an unknown origin. While this is not common in coyotes, it has been reported several times in the literature (Trainer et al. 1968, Samuel et al. 1978).

References

J. N. Caudell, USDA
Deer fibromas (Cont. from pg 1)

Treatment and Control

It has been learned from experiments that infections stimulate an immune response in host deer, and thus become self-limiting. In most deer, the fibromas develop to only a few mm in diameter; they abruptly stop growing, dry up, and disappear. Only in an occasional deer do they develop into conspicuous skin tumors. Results of the New York survey indicate that wild deer are exposed and develop an immunity to the fibroma virus early in life. Treatment is not feasible for most wild populations. The disease has not been reported as a problem in captive herds. Presumably, the growths could be removed surgically if it became important. Since exposure to the virus leads to immunity, it should be possible to develop a vaccine if prevention becomes necessary. To date, clinical disease has been too rare to justify such actions.

Significance

Fibromatosis is not an important cause of deer mortality. The disease is not known to infect humans. Its main significance lies in the consternation and concern experienced by the hunter who shoots a deer covered with ugly-looking lumps. Though they don't harm the meat, fibromas are repulsive to most persons and therefore render a fine trophy aesthetically undesirable. Some domesticated animals (cattle, dogs, etc.) are subject to "warts" common to their kind. There is no reason to believe that fibromatosis of deer is infectious to domestic animals.

Corona viruses are widespread in humans and a number of animals including canids, bovidae, suidae, galliformes, and other species groups. These viruses are often responsible for respiratory and intestinal diseases which differ depending upon the species infected. Corona viruses are assigned to 3 groups. Group 1 consists of different species of corona viruses affecting pigs, canids, felines, humans, and bats. Group 2 consists of different species of corona viruses affecting rodents, humans, cattle, canids, pigs, pinnips, and humans. Group 3 consists of different species of corona viruses affecting chickens, turkeys, pheasants, geese, ducks, and pigeons (Cavanaugh 2005). The turkey corona virus was first discovered in Washington State in the late 1940’s and in Minnesota in the early 1950’s. This disease is highly contagious and often causes heavy losses in commercial poultry. It has been found in the turkey producing areas throughout the U.S. (Clark 2003). In 2009 and 2010 there was a significant outbreak of turkey corona virus in confined turkey houses in Dubois County (primarily the north east quadrant of the county), Indiana, as well as isolated instances in turkey house in Daviess, Pike, and Greene counties. Prior to this, the last outbreak of turkey corona virus in Indiana was in 1995.

Turkeys are thought to be the only natural host of turkey corona virus. Pheasants, gulls (species not specified), coturnix quail, and hamsters are immune to infection (Saif 2003). The turkey corona virus can infect turkeys of all ages (Saif 2003). In young pouls, it is can cause mortality. In older birds, it can result in reduced growth and egg production (Cavanaugh 2005). In captive birds, the entire flock is exposed to the disease with up to 100% of the birds possibly affected. Mortality commonly ranges from 5 to 50% (Clark 2003). Droopy wings, watery feces, weight loss, dehydration, and fecal staining of the feces are seen in affected birds.

The turkey corona virus is shed in the feces of affected turkeys and ingested by other turkeys. Insects, such as darkling beetles and flies, can also serve as mechanical vectors which can be ingested by turkeys. Other farms and areas can be infected through other mechanical vectors such as people, transportation of litter, movement of equipments, and wild birds. The incubation period for this virus is typically 2 to 3 days. Turkey corona virus is typically shed for several weeks after turkeys have recovered and, during this period, can infect susceptible birds (Saif 2003). Older birds are typically thought to serve as a reservoir for younger birds. For this reason, it is undesirable to have birds of different ages on a single farm (Clark 2003).

Birds that recover from an infection are resistant to additional infection; however, the extent and nature of the immunity is not completely understood (Saif 2003). Corona viruses can be inactivated through common disinfectants. It can also persist for extended periods in dirty or contaminated locations.

Potential effects on wild birds

The actual effect of turkey corona virus on a localized wild turkey population has not been studies; however, I believe we can draw some hypothesis based upon the effects on domestic turkeys and the differences in behavior and ecology of wild turkeys. It is likely that wild turkeys can be affected by this disease, probably in a similar manner as domestic turkeys (i.e., reduced weights, reduced egg production, etc.). On a population scale, I would expect that mortality to be significantly less because wild turkeys do not flock in large numbers or live in the same area where they defecate. A mortality event of a localized flock could possible occur, but based on the mortality of captive birds, it would probably be less than 50% of the size of the flock. Because wild turkey flocks consist of young birds during on time per year, any infection should run its course through the flock within a couple of months and should not persist over multiple years without reinfecction.

Wild turkeys could become infected through direct contact with infected domestic turkeys (which is unlikely in a typical confined turkey operation), contact with an infected premise (such as the inside of a recently depopulated turkey house), ingestion of insects which serve as a mechanical vector of the disease, or contact with feces that have been recently spread on a pasture or other field. Wild turkeys are most likely to become infected through ingestion of infected insects or through fields that have been recently fertilized with infected feces. The primary concern of infected wild birds would be the reintroduction of the disease to a farm that has been recently decontaminated. However, growers should be able to be mitigated with proper biosecurity.

While we hypothesized that the introduction of turkey corona virus would not have a significant effect on a typical wild turkey population, it is still of interest to determine if wild turkeys are becoming infected around positive farms. We conducted surveillance of wild turkeys around the affected turkey farms during the 2011 Indiana spring wild turkey season to determine if the disease is present in the wild flock.
Disease Surveillance Update

Coronavirus surveillance (Continued from page 3)

Methods

During the spring wild turkey hunt of 2011, surveillance occurred around or on the infected premises in Dubois County. Anyone hunting on these previously infected farms collected a blood samples from wild turkeys that were harvested. The samples were tested at the Heeke Lab at the Southern Indiana Purdue Agricultural Center in Dubois, Indiana. The blood was spun down and the serum tested using an indirect immunofluorescent antibody test.

Blood collection packets were also sent to 5 Indiana DNR properties in northern Indiana. The properties were chosen because of there were no commercial poultry facilities within the immediate proximity. At these properties, the entire pluck (the trachea, heart, lungs, intestines, and other internal organs) were also removed from the bird.

Results

A total of 39 wild turkeys were collected during the spring turkey season. Eleven birds were collected from Dubois County, 8 samples were collected from Winamac Fish and Wildlife Area (FWA) in Pulaski County, 3 samples were collected from Pigeon River FWA in LaGrange County, 10 samples were collected from Jasper Pulaski FWA in Jasper County, 2 samples from Willow Slough FWA in Newton County, and 3 samples were collected from Kingsbury FWA in LaPorte County. Two additional samples were also collected from wild turkeys in Jackson and Lawrence Counties. One sample from Dubois County was positive for turkey corona virus. All other samples were negative.

Literature cited

Project collaborators:

Rich Rudolph, Farbest Farms

Tom Hooper, Heeke Animal Disease Diagnostic Lab

Tom Bryan, Heeke Animal Disease Diagnostic Lab

Steve Backs, Indiana Department of Natural Resources

Joe Caudell, USDA APHIS Wildlife Services

Disease Surveillance Update

National surveillance for hepatitis E in wildlife

Hepatitis E Virus (HEV) is one of the five (A, B, C, D, and E) hepatitis viruses that can cause swelling or inflammation of the liver in humans. HEV is a single stranded RNA virus in the genus **Hepevirus**. This disease is prevalent in most developing countries and is primarily spread through contaminated water supplies or consumption of undercooked meat. Since HEV is considered a waterborne disease, major outbreaks are typically observed immediately following typhoons and heavy rains that result in flooding. There are 4 genotypes of HEV found throughout the world. Genotypes 3 and 4 are zoonotic, with domestic swine and several wildlife species (rodents, deer, feral swine) potentially serving as reservoirs. Recent studies have indicated that domestic swine operations may have infection rates as high as 95%. The National Wildlife Disease Program is collaborating with the National Institutes of Health (NIH), and the Food and Drug administration to collect samples to identify whether HEV is circulating in wildlife species and if so which genotypes are most prevalent. Surveillance for HEV will allow for both detection and identification of the genotypes circulating in feral swine and cervid populations. Paired samples (serum and fecal) will be collected to distinguish active shedding from exposure (seroprevalence). Genotyping will be conducted on positive samples. USDA APHIS Wildlife Services will be collecting samples from Indiana white-tailed deer and feral swine to aid in this surveillance.

Article by J. Caudell, USDA APHIS Wildlife Services

Feral swine in Indiana. Photo: USDA APHIS WS
Tick-borne Powassan Virus Increasing In Northern US

A woman in her 60s from northern Minnesota has died from a brain infection due to Powassan (POW) virus. This is the first death in the state attributed to the disease. One other likely POW case has been identified this year in Minnesota, in an Anoka County man in his 60s who was hospitalized with a brain infection and is now recovering at home. POW virus is transmitted through the bite of an infected tick.

Both 2011 cases became ill in May after spending time outdoors and noticing tick bites. Health officials say this death serves as a reminder of the vital importance of preventing tick bites.

“Although Powassan cases are rarely identified, it is a severe disease which is fatal in about 10 percent of cases nationwide, and survivors may have long-term neurological problems” said Dr. Ruth Lynfield, state epidemiologist with the Minnesota Department of Health (MDH). “Powassan disease is caused by a virus and is not treatable with antibiotics, so preventing tick bites is crucial.”

In Minnesota, POW virus can be transmitted by the blacklegged tick (also called the deer tick), which can also carry Lyme disease, anaplasmosis, and babesiosis. The blacklegged tick is abundant during our warm weather months in hardwood and mixed-hardwood forests of Minnesota.

POW was first detected in Minnesota in 2008, in a Cass County child who was exposed near home. In 2009-2010, five additional POW cases were identified in Minnesota. These cases were likely exposed to infected ticks in north-central or east-central counties (Cass, Carlton, Hubbard, Itasca, or Kanabec).

POW virus was first described in 1958 in Powassan, Ontario. Since then, about 60 cases have been identified in North America. Most of these cases were from eastern Canada and the northeastern U.S. until the last decade, when cases began to be reported from Michigan, Wisconsin, and now Minnesota.

White-Nose Syndrome Expands Presence In Midwest

The Kentucky Department of Fish and Wildlife Resources and the U.S. Fish and Wildlife Service (USFWS) have detected the presence of white-nose syndrome in a bat residing in Trigg County, located in southwest Kentucky. A suspect little brown bat from a cave in Trigg County, about 30 miles southeast of Paducah, was submitted to the Southeastern Cooperative Wildlife Disease Study (SCWDS) in Athens, Ga., which confirmed the disease in April 2011.

Ohio and federal biologists surveyed Ohio mines in February and March for white-nose syndrome and to assess bat populations. Samples collected in an abandoned mine, which is gated and protected from public access, on the Wayne National Forest were tested at the Southeastern Cooperative Wildlife Disease Study (SCWDS) in Georgia where scientists confirmed presence of the disease in little brown bats.

In March 2011, wildlife officials sounded the all-clear for white-nose syndrome in Illinois for this year, but after several bats tested positive for white-nose syndrome in south-central Indiana last month, it’s just a matter of time before the deadly fungus will spread to the Illinois.

White-nose syndrome, a fungus spreading like wildfire through hibernating North American bats, has just been reported in 12 European countries. But unlike the American epidemic, which typically kills 75 percent or more of exposed bats, the European infection has not been associated with mortality. (Source: National Wildlife Health Center, White-Nose Syndrome News, March and April)
Incidence of Lyme Disease Increases Nationally

Last year [2010] nearly 30,000 Americans were diagnosed with Lyme disease and Pennsylvania leads the nation in the number of confirmed cases. According to Allegheny County Health Department spokesperson Guillerman Cole, the number of cases among Allegheny County residents has been hovering in the 20-30 a year range for some time. In 2009 there were 4,950 confirmed cases of Lyme disease in all of Pennsylvania.

Lyme disease, which is transmitted by black-legged ticks (Ixodes spp.) or deer ticks, is up in the state of Wisconsin as well. The number of cases statewide in 2010 rose to 2,511, up from 1948 in 2009. Locally, both Eau Claire and Chippewa Counties saw an increase in the number of Lyme disease cases. Eau Claire County went from 158 cases in 2009 to 196 in 2010. A bigger deer population, more people living near wooded areas and greater awareness about Lyme disease could be reasons for the higher numbers says Vicky Buhr, a Mayo Clinic Health System nurse practitioner. (Source- ProMED Digest, V2011 #239, June 3, 2011. Edited.)

Midwest Wildlife Disease Update (Cont. from pg. 5)