PERIODICAL CICADA IN INDIANA

Clifford S. Sadof, Extension Entomologist

In Indiana most broods of the periodical cicada appear once every 17 years. However, two broods come out every 13 years. Periodical cicadas are usually referred to as “17-year or 13-year locusts.” They are about 1-1/2 to 2 inches long and have black bodies, reddish legs, wing margins, and eyes.

LIFE HISTORY

Cicadas have an interesting life cycle. They appear in the last part of May and during June. The incessant cadence of high-pitched, shrill sounds announces their presence. Only the males make this noise. It is produced by vibrating membranes on the underside of the first abdominal segment. The females have no sound-producing organs.

A female cicada has a knife-like organ that she uses to slit or puncture twigs of woody plants in which she lays her eggs. In about 6 weeks, the eggs hatch, and the nymphs drop to the ground, dig into the soil, and feed by sucking sap from tree roots.

Females will only lay eggs in twigs between 3/16” and 7/16” in diameter. At the end of 13 or 17 years, depending upon the brood, the nymphs come out of the ground. They crawl up tree trunks, posts, or other objects, shed their last shell, and emerge as winged cicadas. These adults live about one month. During this time they mate, and each female lays 400-600 eggs. Cicadas are abundant only in areas where trees harbored the eggs of the previous generation. Cicadas can be very numerous in some areas and absent in woodlots nearby.

DAMAGE TO TREES AND SHRUBS

While some people consider the mass emergence of cicadas one of nature’s many wonders, others find it a nuisance. In urban areas, heavy infestations can make the sidewalks and roads slick with dead insect carcasses. In fruit orchards and nurseries, cicadas can seriously damage young trees whose main stems and branches are between 3/16” and 7/16” diameter.

Female cicadas cause damage when they puncture or slit the twigs of trees and shrubs to lay their eggs. Infested branches appear as if the eggs have been stiched in by a sewing machine. These branches will turn brown, die, and sometimes break off. Female cicadas have been reported to lay eggs on over 200 woody tree species and are common on oak, hickory, flowering fruit trees, mountain ash, and grape.

CONTROLLING ADULT CICADAS

Cultural Control

The first step in managing cicadas is to familiarize yourself with their expected emergence periods. These are listed in Table 1. In this way, you can avoid damage by good planning.

When possible, avoid planting new trees in the fall before or during the spring that cicadas will emerge. This could be especially helpful in fruit orchards or woody plant nurseries. Also, delay pruning until the cicadas have disappeared. The injured branches can then be removed after cicadas have stopped flying.

Small ornamental trees and shrubs can be protected by covering them with no larger than 3/8” mesh screening while cicadas are present.

Biological Control

There are many natural enemies of cicadas. Birds, and squirrels will feast on cicadas during a mass emergence. However, the large number of cicadas are likely to outstrip the capacity of these animals to control the problem.

Chemical Control

The use of pesticides for controlling the cicada is controversial. Pesticide trials indicate that pesticide applications need
to be repeated every 3-4 days to prevent oviposition. This is not practical for the 6 week flight period. Cultural controls are therefore recommended.

Those who still wish to use pesticides to reduce injury should apply them to foliage and trunks as adults emerge and repeat 5 to 7 days later. Permethrin (Eight or Spectracide Bugstop), or cyfluthrin (Bayer Advanced) are general use pesticides for fruit and ornamentals that could be used by homeowners and commercial producers in accordance with the label. Commercial fruit producers wanting to protect their fruit trees can use Asana in accordance with the label.

Table 1. When and where in Indiana the 17-year and 13-year cicadas will appear.

<table>
<thead>
<tr>
<th>Brood Number</th>
<th>Race</th>
<th>Year to Appear</th>
<th>Where They Will Appear</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>17-year</td>
<td>2034</td>
<td>Reported in all Indiana counties in 2017, but may be a “shadow brood” of brood X.</td>
</tr>
<tr>
<td>X</td>
<td>17-year</td>
<td>2021</td>
<td>In all counties, but heaviest in south-central Indiana; largest of the 17-year broods.</td>
</tr>
<tr>
<td>XII</td>
<td>17-year</td>
<td>2023</td>
<td>Allen and Orange counties; scarce in Indiana.</td>
</tr>
<tr>
<td>XIII</td>
<td>17-year</td>
<td>2024</td>
<td>Lake, LaPorte, and Porter counties.</td>
</tr>
<tr>
<td>XIV</td>
<td>17-year</td>
<td>2025</td>
<td>40 counties, but heaviest in southwestern Indiana; dense swarms expected in Brown and</td>
</tr>
<tr>
<td>XIX</td>
<td>13-year</td>
<td>2024</td>
<td>8 western counties, from Posey and Warrick on the south to Newton and Jasper on the</td>
</tr>
<tr>
<td>XXIII</td>
<td>13-year</td>
<td>2028</td>
<td>21 counties mostly in southwestern Indiana, with Fountain, Tippecanoe and Fayette the</td>
</tr>
</tbody>
</table>

Table 2. Plants at high risk for damage by cicadas (adapted from Ahern et al., 2004).

<table>
<thead>
<tr>
<th>Genus</th>
<th>Common Name</th>
<th>Genus</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer</td>
<td>Maples</td>
<td>Malus</td>
<td>Apple, Crabapple</td>
</tr>
<tr>
<td>Amelanchier</td>
<td>Serviceberry</td>
<td>Nyssa</td>
<td>Sour gum</td>
</tr>
<tr>
<td>Castanea</td>
<td>Chestnut</td>
<td>Ostrya</td>
<td>Hophornbeam</td>
</tr>
<tr>
<td>Apple, Crabapple</td>
<td>Katsura tree</td>
<td>Oxydendrum</td>
<td>Sourwood</td>
</tr>
<tr>
<td>Cercis</td>
<td>Redbud</td>
<td>Prunus</td>
<td>Cherries, Peaches & Plums</td>
</tr>
<tr>
<td>Chionanthus</td>
<td>Fringe tree</td>
<td>Quercus</td>
<td>Oaks</td>
</tr>
<tr>
<td>Cornus</td>
<td>Dogwood</td>
<td>Rosa</td>
<td>Roses</td>
</tr>
<tr>
<td>Cotinus</td>
<td>Cotinus</td>
<td>Sorbus</td>
<td>Mountain Ash</td>
</tr>
<tr>
<td>Cotoneaster</td>
<td>Cotoneaster</td>
<td>Tilia</td>
<td>Basswood</td>
</tr>
<tr>
<td>Crataegus</td>
<td>Hawthorn, Cockspur</td>
<td>Tilia</td>
<td>Basswood</td>
</tr>
<tr>
<td>Fraxinus</td>
<td>Ash</td>
<td>Weigela</td>
<td>Weigela</td>
</tr>
<tr>
<td>Hamamelis</td>
<td>Witch-hazel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Plants with moderate and low susceptibility to cicada damage (adapted from Ahern et al., 2004).

<table>
<thead>
<tr>
<th>Genus</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilex</td>
<td>Hollies</td>
</tr>
<tr>
<td>Laburnum</td>
<td>Golden chain tree</td>
</tr>
<tr>
<td>Phellodendron</td>
<td>Corktree</td>
</tr>
<tr>
<td>Betula</td>
<td>Birch</td>
</tr>
<tr>
<td>Carpinus</td>
<td>Hornbeam</td>
</tr>
<tr>
<td>Magnolia</td>
<td>Magnolia</td>
</tr>
<tr>
<td>Chamaecyparis</td>
<td>Cedar</td>
</tr>
</tbody>
</table>

Literature Cited:

Web link for more general information: [http://www.cicadamania.com].

Adult periodic cicada (Photo credit: J. Obermeyer)

Periodic cicada eggs in stems (Photo credit: J. Obermeyer)

Periodic cicada damage to stems (Photo credit: J. Obermeyer)

Dieback on oak trees caused by cicada egg laying (Photo credit: J. Obermeyer)