Pesticide Lesson Plan

Theory (Lecture)

- Issues surrounding pesticide use
- Kinds of pesticides
- How they are named
- Insecticide families
- Modes of action
- Practice (Lab)
 - Reading the label and legal use
 - Personal safety and pesticide hazards

Mixed Messages

Issues Surrounding Insecticides

- Personal safety
- Impact on environment
- Impact on beneficial insects
- Pesticide resistance
 - Rotate mode of action to reduce resistance

Insecticide Modes of Action

 See the Insecticide Resistance Action Committee Website for updates
 <u>http://www.irac-online.org/home.asp</u>

View poster of modes of action

http://www.irac-online.org/documents/gen_moaposter05.pdf

Responses to Issues

- Vary in toxicity and modes of action
- Vary in effects on non-targets
- Vary in longevity
- Vary in compatibility with biological control and other non-targets
- Most effective long term use is to choose the least toxic material needed to get the job done

Definitions- Target Classifications

Pesticide = Killer of pests

What do each of these pesticides kill?

insecticide, herbicide, fungicide, miticide, rodenticide, molluscicide nematicide, bacteriacide, piscicide

Modes of Lethal Exposure to Insects

Contact insecticide - kills on contact
Stomach poison – must be eaten

Fate of Insecticide on Plants

- Contact- stays where it is
- Systemic is taken up by plant roots
- Lamellar systemic- moves through leaf tissue to other side of leaf.

Insecticide Nomenclature

- Carbamate Pesticide Family
- Sevin Brand (trade) name Sevin
- Carbaryl EPA approved common name
- 70 WP Formulation abbreviation
 - 70% wettable powder by weight

Classifications of Pesticides

- By source or chemical structure (Pesticide Family)
 - Physical properties, Origin
- By modes of action
 - Important for preventing resistance and assessing non-target effects
- Conventional vs Biorational
 - Legal implications -1996 Food Quality Protection Act
 - Compatibility with biological control

- Inorganics
- Oils
- Salts of Fatty Acids (soaps)
- Botanicals
- Microbial toxins
- Synthetic organics
- PIPS Pesticides in Plants (GMO's)

http://ohioline.osu.edu/b504/b504_6.html

Inorganics

- Boric acid
- Diatomaceous earth
- Sulfur
- Calcium and Lead Arsenates

Oils

Dormant season grade

- Summer season grade
- Citrus oil
- Salts of Fatty Acids (soaps)
 - Insecticidal soaps

http://ohioline.osu.edu/b504/b504_13.html

Botanicals

- Neem (Azadiractin)
- Pyrethrum
- Rotenone
- Nicotine
- Ryania

http://ohioline.osu.edu/b504/b504_13.html

http://ohioline.osu.edu/b504/b504_6.html

- Microbial toxins
 - Bacillus thuringiensis
 - Avermectin B
 - Spinosyns

http://ohioline.osu.edu/b504/b504_13.html

Synthetic Organic Pesticides

- Organochlorines (DDT, Lindane,)
- Organophosphates (Malathion, acephate, diazinon)
- Carbamates (carbaryl, methiocarb)
- Pyrethroids (permethrin, bifenthrin)
- Chloronicotynils and Neonicotynils (imidacloprid)
- Insect Growth Regulators

http://ohioline.osu.edu/b504/b504_6.html

More Synthetic Organics

- Fiproles -(fipronil)
- Pyrroles -Chlorfenapyr (Pylon))
- Pyrazoles (Fenpyroximate)
- Pyradizones -Pyradiben(Sanmite)
- Quinazolines (Fenazaquin, Hydramethalnon)

Modes of Action of Insect Toxicants

- Physical toxicants
- Antifeedants
- Axonic poisons (nerve poison)
- Synaptic poisons (nerve poison)
- Metabolic inhibitors
- Cytolitic toxins
- Muscle poisons
- Alkylating agents
- Disruptors of molting, metamorphosis and cuticle formation (Insect Growth Regulators)

Kinds of Toxicants - Physical

- Physical toxicants mechanically block physiological process
 - Smothering agents oils, soaps
 - Abrasive substances that scratch exocuticle
 - diatomaceous earth, silica gel

Kinds of Toxicants - Antifeedants

- Antifeedants repell or are distasteful to insects
 - Neem Azadirachtin active ingredient

Nerve Poisons: Review of Nerve Impulse Transmission

Kinds of Toxicants – Nerve Poisons

- Axonic poisons
 - Sodium channel blockers (Pyrethroids-, DDT)
 - Disrupt movement of sodium through axon by clogging axon

Review of Nerve Impulse Transmission

Impulse transmitted by polarization wave in sodium/ potassium channel

Source: http://courses.washington.edu/conj/membrane/chan.gif

Aceytlcholine and Acetylcholinesterase Mediated Synaptic Transmisssion

Five general types of synaptic neurotransmitters are known

- Cholinergic
- Glutaminergic
- Indoaminergic
- Catecholinergic
- Octopaminergic

Kinds of Toxicants – Chemical Families of Nerve Poisons

- Synaptic poisons –Block chloride channel by interfering with synaptic neurotransmitters
 - Chloronated hydrocarbons (some)
 - Organophosphates
 - Carbamates
 - Avermectins,
 - Fiproles
 - Nicotinoids, neonicotinoids, spinosyns

Example: Nicotine blocks acetylcholine receptors

Anyone really need a cigarette????

Carbamate vs Organophosphate Modes of Action

- Both reduce ability of acetylcholinesterase (Ach_ase) to cleave acetyl choline BUT,
- Organophosphate phosphorylation of Ach_ase is not reversible.
- Carbamylation of Ach_ase is reversible.

Kinds of Metabolic Inhibitors

- Mitochondrial electron transport system blockers
 - Insects unable to exchange biochemical energy (HCN), Rotentone, Organotins, Pyrroles, Pyrazoles Pyridazaones, Quinazolines)
- Mixed function oxidase inhibitors
 - Disrupt ability to produce detoxification enzymes (added as synergists to prevent pesticide breakdown)
- Glycolysis inhibitors (examples??)
 - Poison sugar digestion pathway

Kinds of Toxicants

Cytolytic

Destroy tissue of critical cells

• (eg. Intima- lining of insect gut)

- Muscle poisons
 - Stop muscle contraction
- Alkylating agents
- Insect Growth Regulation Disruptors (IGRs)

Plant Incorporated Pesticides PIPS

Genetically modified plants that produce their own pesticides

- BT Corn... etc...

FQPA Defined Categories

- Conventional- tend to be broad spectrum killing pests and natural enemies, and have long residual activities many are neurotoxins.
- Biopesticide (biorational)- tend to be more selective and with short residual activities. Includes PIPS.

See EPA website:

http://www.epa.gov/pesticides/biopesticides/

Toxicity and Compatibility of Common insecticides

Disulfoton vs Dimilin ?

http://www.entomology.umn.edu/cues/IPM -Pesticides/IPM-pesticides.html

Study Questions

- Distinguish between a pesticide family and pesticide mode of action.
- Know differences between modes of action associated with neurotoxins, physical toxicants, metabolic inhibitors and insect growth regulators
- Know how the EPA distinguishes between conventional and biorational pesticides and its relationship to FQPA.
- How does using the least toxic material, reduce environmental problems associated with pesticide use?
- How does rotating with pesticides of different modes of action reduce problems with pesticide resistance.
- Know that the ability of different pesticides to attack different parts of each neurotransmitter system allows the potential for pesticides with different modes of action