Introduction to Borers and Their Control

What kinds of insects are borers?

- Moths
 - Shoot tip moths (several families)
 - Clear wing moths
 - Others, pyralid moths, carpenter worms
- Beetles
 - Metallic wood boring beetles (Flat headed borers)
 - Long horned beetles
 - Bark beetles
 - Ambrosia beetles
 - Sap beetles
 - Weevils
- Wasps
 - Horn tails
 - Sawflies

Borers

- Which trees get borers?
- How can sanitation reduce borer problems?
- Can you control borers with reduced site stress?
- How can resistant varieties be used?
- What is the potential for biological control?

How do borers find stressed trees?

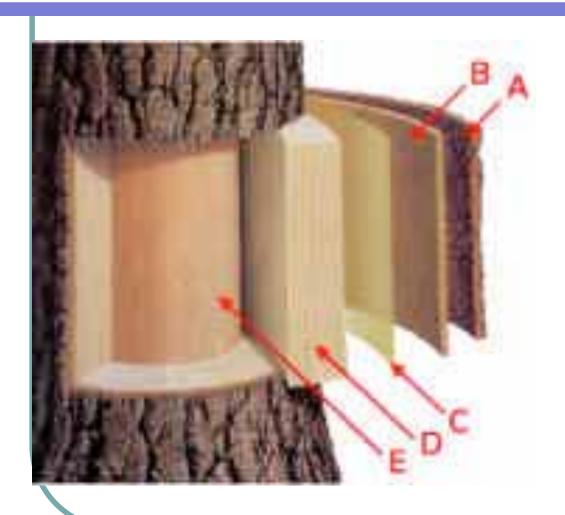
- Trees that have been freshly wounded or are under water stress tend to give off a stronger smell.
 - Fresh cuts release volatiles.
 - Water stress causes greater rates of anaerobic glycolysis and ethanol production.
 Ethanol extracts essential oils of plants and increases the strength of the scent

Borer Chemical Control

- Trunk insecticides
 - Emulsifiable concentrate formulation long lasting
 - Pyrethroids, bifenthrin (Onyx), permethrin (Astro)
- Systemic insecticides
 - Imidacloprid Kills beetle borers only
 - Does NOT kill caterpillar borers
 - Won't work if vascular system is damaged

How topical insecticides kill borers

- As adults feed on leaf tissue
 - Metallic wood boring beetles (Flat headed borers)
- As they chew their way into the tree
 - Adults chew an egg laying niche, or mating chamber (Beetles)
 - Larvae of many beetles bore directly into trunk of tree after eggs are laid so they avoid insecticide
 - Larvae chew into the bark after egg hatches (Moths)


How topical insecticides kill borers

- As adults chew their way out of the trunk
 - Beetles, Wasps
- Note: Horn tail and Sawfly wasps have ovipositors that deposit eggs beneath bark and insecticide,
 - But adults are likely to contact enough insecticides to be killed as they look for an oviposition site

How systemic insecticides kill borers

- Material is injected into trunk or soil.
- Moves through xylem and diffuses into phloem so that vascular system is penetrated
- Diffusion through vascular system and protection is poor on injured trees.
- Wounds may add stress to trees and contribute to borer injury

Anatomy of a tree trunk

A- Outer Bark- water proof, made of old phloem

B- Inner bark – phloem

C- Cambium cell layer-

- Growing part, makes phloem and xylem

D- Sapwood -Young Xylem,

Conducts water, fertilizer, and pesticides

E- Heartwood

-Old Xylem, Does not conduct water, Provides structural support

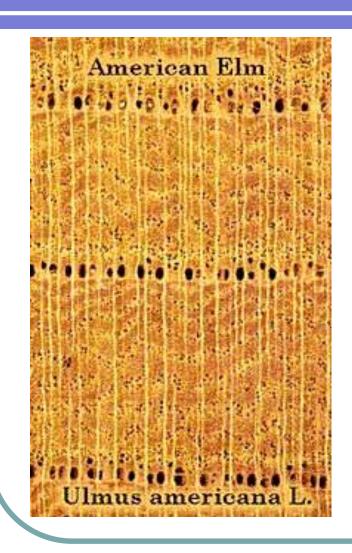
http://www.arborday.org/trees/ringstreenatomy.cfm

Porosity of Sapwood

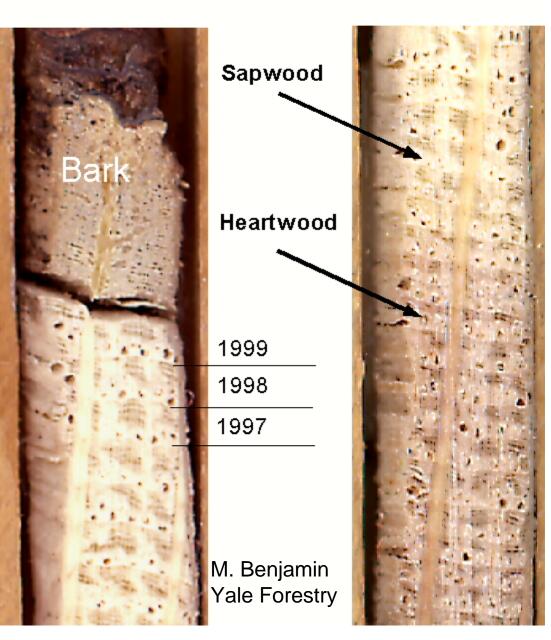
Describes where in sapwood injected materials can be taken up in transpiration stream.

Ring Porous Species-

99% taken up by vessels beneath bark in current annual growth ring


Diffuse or Non Porous Species

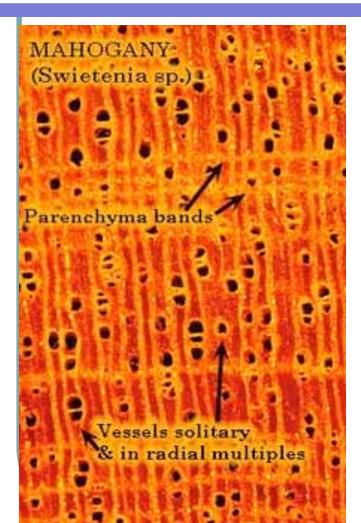
Taken up by vessels in most recent 3-4 growth rings


Source; W. Chaney, 1999. Arbor Age 11: 25-32

Ring Porous

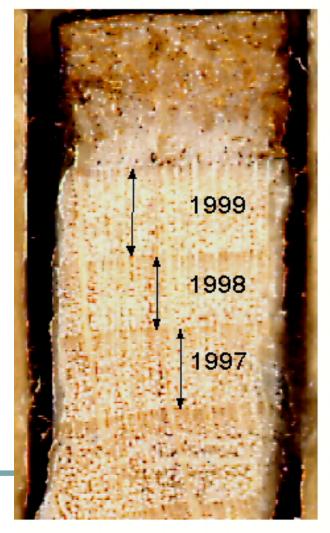
Black Oak Railroad Point - North Haven

Ring Porous



Diffuse Porous

American beech Hubbard Brook, NH


Start of 1999 growth


Cambium

M. Benjamin Yale Forestry

Close-up

Non-Porous

Conifers have non-porous sapwood

Hemlock- Keene Forest, NH.

Common Ring Porous Species

Oaks

Hickories

Elms

Ashes

Hackberry

Black locust

Sassafras

Mulberry

For more information:

http://www.woodanatomy.ch/species_dico.php